

CHIU YEE LIONA POON A/PROF., M.D.,

Faculty of Medicine

The Chinese University of Hong Kong

Prediction for a Successful Induction of Labour

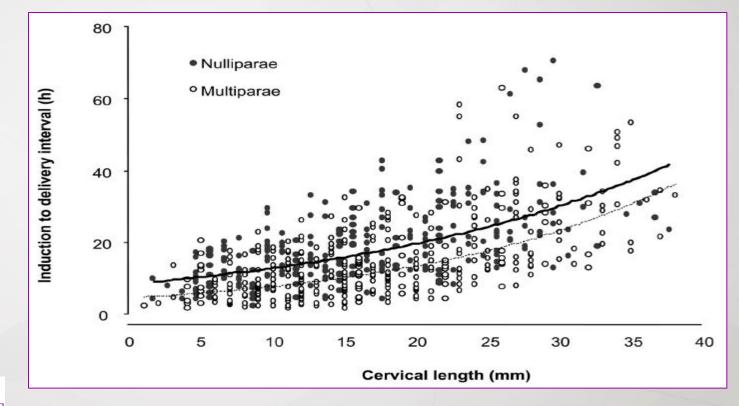
Liona Poon

Clinical Associate Professor MBBS MRCOG MD(Res)

Prediction of vaginal delivery

Induction of labour at 35⁺⁰ - 42⁺⁶ wks

	822 singleton pregnancies				
Cervical length in mm Maternal factors:	Prolonged pregnancy (n=370) Hypertension (n=105) SGA / LGA (n=131) Maternal disease (n=62)				
Parity	Prelabour ROM (n=58) Maternal reguest (n=50)				
Maternal age	Past obstetric Hx (n=24) APH (n=22)				
BMI					
Gestational age	Vaginal delivery within 24h in 530 (64.5%)CS within 24h for fetal distress in 54 & FTP in 28 (10.0%)				

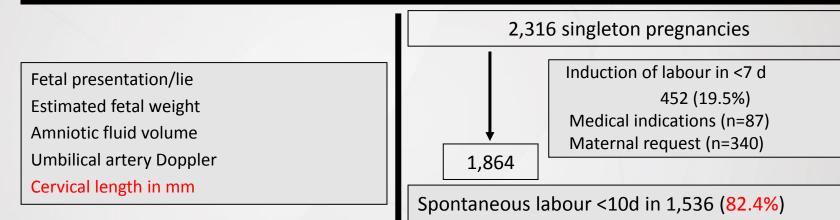

CS for fetal distress in 70 & FTP in 91 (19.6%)

Aims - To examine the effect of gestational age, BMI, maternal age, pre-induction cervical length and parity on:

- 1. The induction-to-delivery interval
- 2. The likelihood of vaginal delivery within 24 hours
- 3. The risk for CS

Induction-to-delivery interval

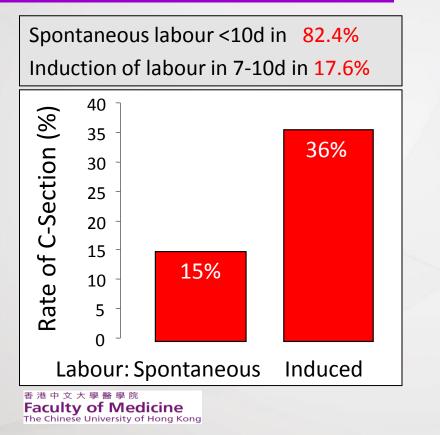
Prediction models



Outcome	Induction-to-delivery interval in 24h Hazard ratio (95% CI)	Vaginal delivery in 24h Odds ratio (95% CI)	Caesarean section for FTP Odds ratio (95% CI)
Cervical length Parity Nullip Multip	0.89 (0.88-0.90) 1.00 2.39 (1.98-2.88)	0.86 (0.84-0.88) 1.00 3.59 (2.47-5.22)	1.11 (1.07-1.14) 1.00 0.26 (0.15-0.43)
GA BMI < 30 <u>></u> 30	1.13 (1.07-1.20)	1.19 (1.07-1.32)	0.83 (0.73-0.96) 1.00 2.07 (1.27-3.37)
Age Birthweight	0.995 (0.99-0.998)		1.05 (1.00-1.09)

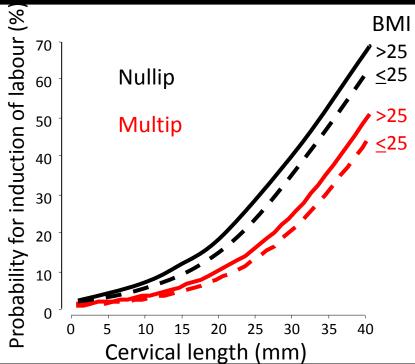
Prediction of post-term vaginal delivery

Prolonged pregnancy clinic at 40⁺⁴ - 41⁺⁶ wks

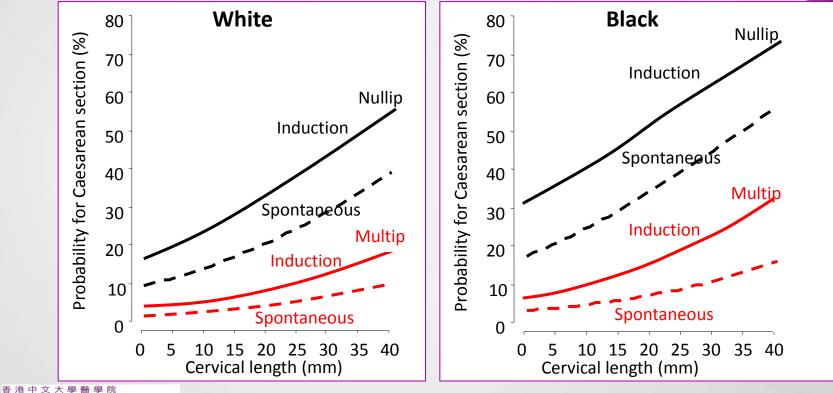


Induction of labour in 7-10d in 328 (17.6%)

Aims - to predict the probability of :


- 1. Spontaneous onset of labour within subsequent 10 days
- 2. Vaginal delivery after spontaneous or induced labor

Labour & delivery


CU Medicine HONG KONG

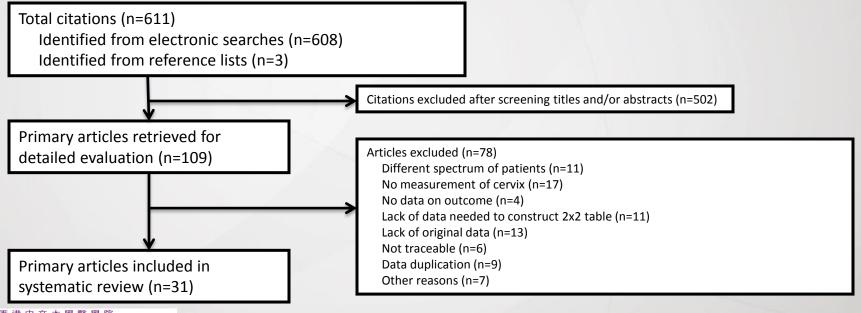
Need for Induction

Prediction of CS

音 港 中 文 八 学 蕾 学 阮 Faculty of Medicine The Chinese University of Hong Kong

Spontaneous labour 80%

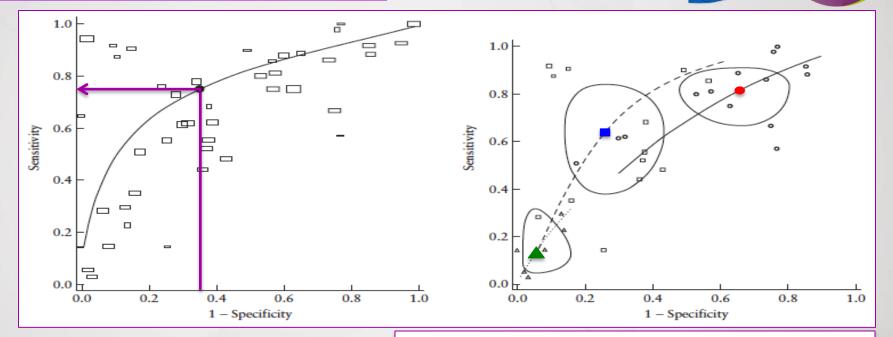
Short Cx, Multip, Thin


Caesarean section rate 20%

Long Cx, induced labour, Black, Nullip, Obese

Prediction of IOL

To perform a systematic review & meta-analysis to assess the predictive capacity of cervical length for the outcome of IOL



Prediction of CS

Study	ТР	FP	FN	TN	Sensitivity	Specificity	Sensitivity	Specificity
Paterson-Brown ¹⁷ (1991)	1	11	6	32	0.14 0.00-0.58)	0.74 (0.59-0.86)		_ _
Meijer-Hoogeveen39 (2009)) 13	30	24	158	0.35 (0.20-0.53)	0.84 (0.78-0.89)	_	-=-
Park43 (2007)	15	46	19	81	0.44 (0.27-0.62)	0.64 (0.55-0.72)	_	
Verhoeven48 (2009)	13	92	14	121	0.48 (0.29-0.68)	0.57 (0.50-0.64)	_	
Bastani ²⁶ (2011)	29	25	28	18	0.51 (0.37-0.64)	0.83 (0.75-0.88)		-=-
Rozenberg ²² (2005)	25	81	23	137	0.52 (0.37-0.67)	0.63 (0.56-0.69)		
Cromi ³⁰ (2007)	27	27	22	79	0.55 (0.40-0.69)	0.75 (0.65-0.82)		-=-
Eggebo ³³ (2008)	20	90	16	149	0.56 (0.38-0.72)	0.62 (0.56-0.69)		
Rane44 (2003)	44	99	27	212	0.62 (0.50-0.73)	0.68 (0.63-0.73)		-
Gabriel ¹⁹ (2002)	33	49	20	77	0.62 (0.48-0.75)	0.61 (0.52-0.70)	_ _	
Elghorori34 (2006)	11	0	6	87	0.65 (0.38-0.86)	(1.00) 0.96-1.00)	_	-
Yanik ⁵¹ (2007)	30	11	14	18	0.68 (0.52-0.81)	0.62 (0.42-0.79)		_
Cheung ²⁹ (2010)	90	214	30	126	0.75 (0.66-0.82)	0.37 (0.32-0.42)		
Daskalakis ³¹ (2006)	34	22	11	70	0.76 (0.60-0.87)	0.76 (0.56-0.84)	— — —	
Gómez Laencina38 (2007)	49	39	14	75	0.78 (0.66-0.87)	0.66 (0.56-0.74)		
Tan ⁴⁶ (2007)	44	103	11	91	0.80 (0.67-0.90)	0.47 (0.40-0.54)		
Caliskan ²⁸ (2006)	12	34	2	26	0.86 (0.57-0.98)	0.43 (0.31-0.57)	_	——
Mohamed ⁴⁰ (2000)	21	6	3	50	0.88 (0.68-0.97)	0.89 (0.78-0.96)	_ _	
Gabriel35 (2001)	32	64	4	34	0.89 (0.74-0.97)	0.35 0.25-0.45)		
Dewandeleer32 (1998)	9	32	1	33	0.90 (0.55-1.00)	0.51 (0.38-0.63)	_	— — —
Keepanasseril37 (2007)	29	16	3	90	0.91 (0.75-0.98)	0.85 (0.77-0.91)	_ _	
Ware49 (2000)	22	5	2	48	0.92 (0.73-0.99)	0.91 (0.79-0.97)		, , , , , ,
							0 0.2 0.4 0.6 0.8 1.0	0 0.2 0.4 0.6 0.8 1.0

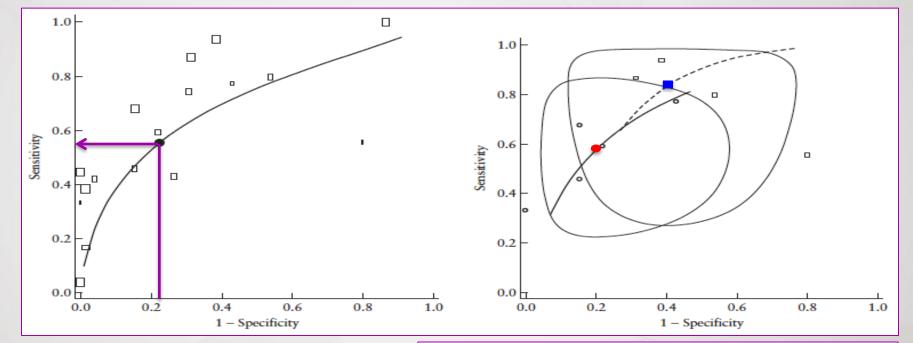
Prediction of CS

Cx 20 mm: DR 82% FPR 66% LR+ 1.2 LR- 0.53 Cx 30 mm: DR 64% FPR 26% LR+ 2.5 LR- 0.49 Cx 40 mm: DR 13% FPR 5% LR+ 2.6 LR- 0.92

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong CU Medicine HONG KONG

Prediction of labour & delivery

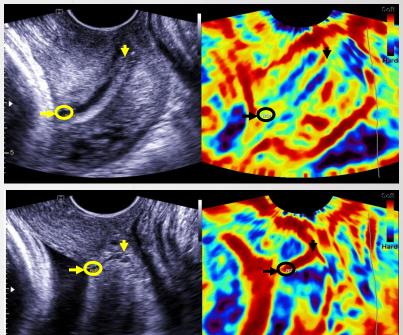
No vaginal delivery within 24h


Study	TP	FP	FN	TN	Sensitivity	Specificity	Sensitivity	Specificity
Bueno ²⁷ (2005)	11	1	55	63	0.17 (0.09-0.28)	0.98 (0.92-1.00)		-=
Reis ²¹ (2003)	33	9	44	25	0.43 (0.32-0.55)	0.74 (0.56-0.87)		_
Novakov-Mikic41 (2000)	34	4	40	22	0.46 (0.34-0.58)	0.85 (0.65-0.96)		
Gonen ³⁶ (1998)	32	7	22	2.5	0.59 (0.45-0.72)	0.78 (0.60-0.91)		_
Pandis ¹⁸ (2001)	97	12	146	66	0.68 (0.60-0.75)	0.58 (0.75-0.92)		
Tanir47 (2008)	17	9	5	12	0.77 (0.55-0.92)	0.57 (0.34-0.78)	_	
Pandis42 (2001)	111	21	17	46	0.87 (0.80-0.92)	0.69 (0.56-0.79)	, , , , , = ,,,	╷╷┬═╌╷
							0 0.2 0.4 0.6 0.8 1.0 0	0.2 0.4 0.6 0.8 1.0

Not achieving active labour

Study	TP	FP	FN	TN	Sensitivity	Specificity	Sensitivity	Specificity
Roman45 (2004)	9	31	7	59	0.56 (0.30-0.80)	0.66 (0.55-0.75)		
Yang50 (2004)	10	23	2	70	0.83 (0.52-0.98)	0.75 (0.65-0.84)		
							0 0.2 0.4 0.6 0.8 1.0 0	0.2 0.4 0.6 0.8 1.0

Prediction of no vaginal delivery


Cx 25 mm: DR 58% FPR 20% LR+ 2.9 LR- 0.53 Cx 32 mm: DR 84% FPR 40% LR+ 2.1 LR- 0.27

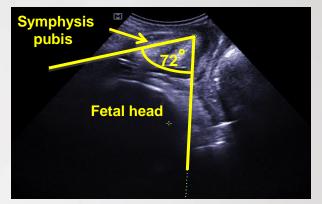
Pre-induction elastography

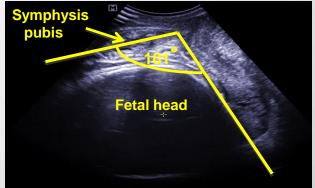
Prediction of successful IOL

	Failed IOL	Successful IOL
Swiatkowska-Freund	2011	
Elastography index	n=16	n=13
Internal os	0.39	1.23 *
Cervical canal	1.17	1.13
External os	111	1.00
Fruscalzo 2015	n=4	n=73
Cervical tissue strain	0.6	0.8 *
Cervical tissue strain	0.0	0.8

Pre-induction AOP

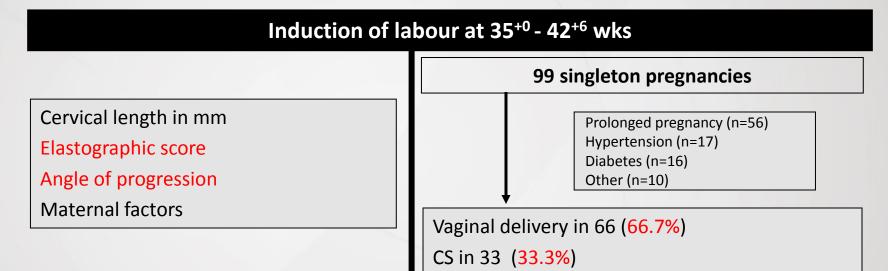
Prediction of vaginal delivery


AOP provides a sonographic measure of head station


Several studies in labouring women reported a wide angle indicates a good chance of vaginal delivery

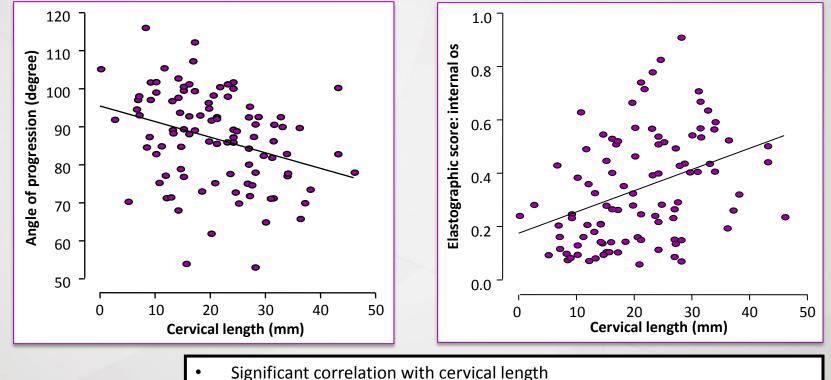
AOP measured in 100 nullip and 71 multip nonlabouring women at 39-42 wks:

- In women who delivered vaginally (n=161), multip had a narrower AOP than nullip (98° vs 104°)
- In nullip, median AOP was narrower in those who went on to deliver by CS (90° vs 104°); an AOP <u>></u>95° is associated with vaginal delivery in 99% and 89% of women who delivered by CS had an AOP <95°



Pre-induction AOP & elastography

Prediction of vaginal delivery



Aim - To examine the potential value of pre-induction cervical length, cervical elastography and angle of progression in prediction of successful vaginal delivery & induction-todelivery interval

Pre-induction AOP & elastography

Relation with cervical length

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

AOP & elastography do not provide additional prediction for vaginal delivery

Pre-induction cervical score

Prediction of IOL

Induction of labour at 37⁺⁰ - 42⁺⁶ wks

Bishop score

Cervical score

24 patients excluded for previous CS, APH and CPD etc

Active labour in 93 (86.9%)

- 86 had vaginal delivery
- 7 had CS (5 for FTP, 2 for fetal distress)

CS in 14 for failed IOL (13.1%)

Aims - To evaluate the role of pre-induction transvaginal sonographic cervical score in predicting labour outcome

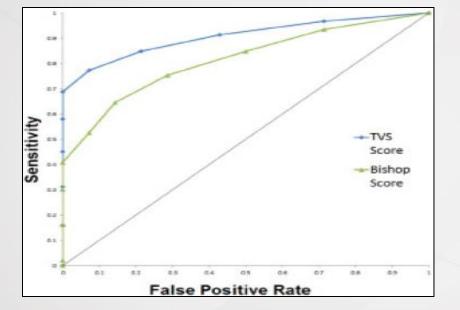
To compare its performance against Bishop score in women undergoing IOL

Bishop score vs cervical score

Prediction of IOL

Modified Bishop score

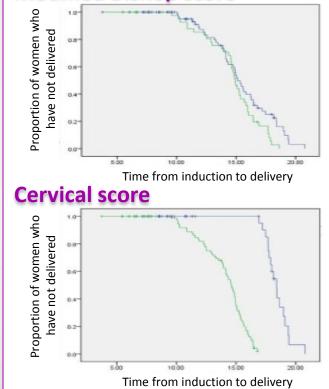
Score	0	1	2
Dilatation of cervix	< 1 cm	1- 2 cm	>1 cm
Cervical length	>2 cm	1- 2 cm	< 1 cm
Position of cervix	Posterior	Mid	Anterior
Consistency of cervix	Firm	Soft	Soft and stretchable
Station of Head	≥ -2	-1	≥0


Cervical score

Score	0	1	2
Cervical length	>3 cm	2-3 cm	< 2 cm
Funnel length	Absent	≤ 0.5 cm	>0.5 cm
Funnel width	Absent	≤ 0.5 cm	>0.5 cm
Position of cervix	Curved	-	Straight
Distance of presenting part to external os	>3 cm	2-3 cm	< 2cm

Bishop score vs cervical score

Prediction of active labour & vaginal delivery



Scorir	ng methods	DR (%)	FPR (%)	LR+	LR-	AUC
Bisho	p score >4	64.5	14.3	4.5	0.4	0.815
Cervio	al score >4	77.4	7.1	10.8	0.2	0.907

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

Modified Bishop score

Conclusions

- Cervical length assessment has moderate capacity to predict outcome of delivery after IOL
- Cervical score assessment is superior to the Bishop score in predicting labour outcome
- Cervical elastography and AOP have limited clinical utility in predicting a successful IOL

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

Thank you